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Abstract

Carrying out a Probabilistic Tsunami Hazard Assessment (PTHA) requires a large number of simulations done at a high
resolution. Statistical emulation builds a surrogate to replace the simulator and thus reduces computational costs when
propagating uncertainties from the earthquake sources to the tsunami inundations. To reduce further these costs, we propose
here to build emulators that exploit multiple levels of resolution and a sequential design of computer experiments. By
running a few tsunami simulations at high resolution and many more simulations at lower resolutions we are able to provide
realistic assessments whereas, for the same budget, using only the high resolution tsunami simulations do not provide a
satisfactory outcome. As a result, PTHA can be considered with higher precision using the highest spatial resolutions, and
for impacts over larger regions. We provide an illustration to the city of Cilacap in Indonesia that demonstrates the benefit

of our approach.

Keywords Gaussian process - Multi-fidelity - Emulation - Experimental design - Uncertainty propagation -

Hazard assessment

1 Introduction

A tsunami is an unpredictable geophysical phenomenon
and has the potential to cause massive destruction along
the coasts and leave large death tolls. The unpredictability
of tsunami phenomena poses a challenge to tsunami
researchers. Tsunami waves are primarily generated by
seabed displacements such as underwater earthquakes and
submarine landslides. After generation, the tsunami waves
propagate rapidly over the deep ocean, get amplified when
the water depth decreases, and run up the coast, provoking
potentially severe damage. Recent tsunamis such as the
Palu (September 2018, more than 2000 deaths) and Anak
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Krakatau (December 2018, more than 450 deaths) tsunamis,
both in Indonesia [1, 2], have been particularly devastating,
as their characteristics were somehow unexpected due to
a lack of adequate probabilistic scenario-based assessment
of the source mechanism. Notably, the 2004 Indian Ocean
tsunami killed roughly 228,000 people across the Indian
Ocean, especially from vulnerable communities, and the
2011 Tohoku tsunami killed approximately 19,000 people
in Japan [3, 4]. In particular, there is a significant need
for Government to assess the generic risk to buildings,
and the concrete impact on the full range of assets of
households. In response to the urgent necessity, the first end-
to-end practical modelling that interconnects tsunami risk
and in-depth economic analysis of the losses in the affected
area has recently been developed [5]. Since uncertainties
in the size of future tsunamis and their local impacts
are key to the estimation of the risk, the significance
of sophisticated ways of dealing with more precise
uncertainty quantification in tsunami hazard is all the more
increasing.

Probabilistic scenario-based tsunami hazard assessments
[6-8] deliver a priori critical data to tsunami disaster
planning and practice. There exist variants in probabilistic
scenario-based assessments as discussed in recent in-depth
reviews [9, 10]. However, apart from the difficulties in
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assigning probabilities to scenarios, the computational
burden needed for simulating each scenario prohibits
an exhaustive sweep over the entire range of plausible
scenarios. Therefore, as mentioned e.g. in Gopinathan
et al. [11], statistical emulation, one of the methods in
probabilistic scenario-based assessment, is an essential tool
for the end-to-end physical and numerical modelling of
local tsunami impact, i.e., from the earthquake source to
tsunami velocities and heights, in order to surmount the
prohibitive computational cost of running a large number
of simulations. The outputs from a statistical emulator
constitute the predictions of future earthquake scenarios and
allow to quantify and assess high risk but low probability
hazard thresholds.

Statistical emulation in tsunami risk assessment is a
relatively unexplored field although Giles et al. [12] and
Gopinathan et al. [11] have established an insightful
framework in Gaussian Process (GP) tsunami emulation.
Alternative approaches e.g., polynomial chaos and neural
networks have been proposed [13—-15]. More examples
of GP emulation in tsunami simulation can be found in
recent publications [16-20]. The drawbacks of this prior
research are that (i) computational costs for generating
training data can still be too expensive and (ii) most
of these approaches lack flexible experimental design,
although Salmanidou et al. [19] uses a sequential design
strategy, Mutual Information for Computer Experiments
(MICE) [21]. The flexibility in the design of experiments
is crucial in an expensive simulation setting since only a
small number of runs are allowed under a realistic budget
of computational time. The Latin Hypercube design is a
common design strategy. However, MICE is considered a
more efficient way of sampling in this circumstance, as
it maximises the gain over the input parameter space. As
for reducing the computational time for simulation, the
multi-fidelity approach is rarely applied, with only one
example to our knowledge, the sparse-grid interpolation
[22], which has not been tested using an efficient design of
experiments.

Our new framework of a GP emulation, called Mul-
tilevel Adaptive Sequential Design of Computer Experi-
ments (MLASCE) [23], is intended to overcome these two
difficulties by both reducing the number of costly simu-
lations and rendering the sampling much more efficient,
through the combination of a multi-fidelity approach and
the adaptive design algorithm MICE. To our knowledge,
this is the first time that multi-fidelity GP emulation is
implemented for future earthquake-generated tsunami sim-
ulations. In the following, we show how our statistical
surrogate effectively replaces the numerical tsunami model
and provides fast and precise uncertainty quantification of
future tsunami hazard over the city of Cilacap in West Java,
Indonesia.
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2 Tsunami simulations

For tsunami simulations, we apply the well-validated and
popular numerical package JAGURS [24-27]. The code
solves linear and nonlinear shallow water as well as the
Boussinesq equations and has been efficiently used in
the past to model earthquake- [24, 25] and landslide-
generated tsunamis [28, 29]. The computation of the crustal
displacement is integrated in the code following the Okada
dislocation model [30]. The bathymetry and elevation data
is derived from the General Bathymetric Chart of the
Oceans (GEBCO_2019 Grid product at a resolution of 15
arc-seconds) and the Geospatial Information Agency of
Indonesia (National Bathymetric dataset, BATNAS, at a
resolution of 6 arc-seconds and digital elevation dataset,
DEMNAS, at a spatial resolution of 0.27 arc-seconds) and
were compiled as in Salmanidou et al. [5].

The utilisation of nested grids allows us to focus on the
areas of interest to study the impact of large earthquake
scenarios. In total, we use 3 nested grids spanning across
three different resolution layers with a grid ratio of 1 : 4.
The first layer is the background grid SDO1 (level 1 grid)
with longitudes of 103°E-119°E and latitudes of 05°S-13°S
and with a spatial resolution of Ax = Ay = 0.004°. The
intermediary grid SDO2 (level 2 grid) has a geographical
domain spanning from longitudes of 107.02°E-112.48°E
and latitudes of 08.98°S-07.02°S with Ax = Ay = 0.001°.
The third grid layer SDO3 (level 3 grid) focuses on the
area with longitudes of 108.52°E-109.28°E and latitudes
of 07.8°S-07.62°S with Ax = Ay = 0.00025° and
includes the city of Cilacap, Indonesia. Figure 1 shows the
visualisation of these grid files.

3 Specifying source parameters

The Eastern Sunda Arc zone spanning from Sunda Strait,
in the northwest, to Flores Island, in the southeast, is
one of the Indonesia’s six tsunamigenic zones. In the last
century, circa 50 M,, > 6.5 earthquakes have occurred
in this seismically-active region (US Geological Survey
catalogue!). The seismicity in the Java trench is originated
from the subduction of the Indo-Australian Plate beneath the
Sunda Plate. We therefore focus on a range of tsunamigenic
earthquakes at the subduction zone of the Java trench to
study the maximum run-up heights of a potential tsunami
on the shoreline of Cilacap. The numerical tsunami model,
JAGURS, is run over the region (Fig. 1) and the scenarios
are determined by the source parameters reflecting the
characteristics of this subduction zone. We define these
events below. The area for our emulation is given in Fig. 2.

Uhttps:/earthquake.usgs.gov/earthquakes/search/
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Fig.1 The nested grids. The blue domain denotes the level 1 grid file (SDO1), the yellow shows the level 2 grid (SD02) and the red corresponds

to the level 3 grid (SD03)

We define hpax (¢, 0, x) as the maximum wave height at a
specific gauge in the time period of ¢ € [0, T'] for a specific
set of initial source parameters x:

hmax (¢, 0, x) = max h(t, ¢, 0, x) (D
0<t<T

where ¢, 6 denote respectively longitude and latitude of the
gauge, h(t, ¢, 0, x) is the wave elevation at time ¢ for a
location ¢, 6 and tsunami source parameters x, and 7 is the
end of the simulation time period.

These source parameters dictate the initial conditions of
the equations based on the Okada dislocation model [30]
and are listed in Table 1. Therefore, we establish the input-
output structure by specifying the dependency of the output
value hmax (¢, 0, x) on these source parameters x as the
inputs, for each fixed value of the location of the gauge ¢, 6.

To implement the designs of the scenarios, the ranges and
empirical relationships for these parameters are determined.
The free parameters are latitude, longitude, and slip. Dip,
strike, and rake are fixed to 10.0°, 272.0°, and 90.0°,
respectively, throughout the simulations. The values of the
other source parameters, depth, length, and width depend on
the free parameters. The longitude and latitude of the fault
are assumed to be in the area between the Java trench and
the contour line with depth = 60 km (specified in green
and red lines in Fig. 3). More specifically, Longitude values
range from 103°E to 119°E and for each longitude, latitude
values are constrained to be within the corresponding range
from the southern (the trench) and northern (the contour line
with depth = 60 km) limits described in Fig. 3).

The data from Slab2 [31] are used to determine the
depth parameter. Slab2 is the most recent model describing
the 3D geometries of all seismically active subduction
zones worldwide. Fault contour depths are available so that
a polynomial approximation with third order is used to
interpolate the depth of the fault depending on its location.
The farther the scenarios from the trench, the deeper the
depth of the earthquake becomes.

The slip takes its value between 2 to 12 m assuming
earthquakes of larger magnitudes than the 2006 Java
earthquake as described in Fujii & Satake [32], which
investigates the details of 2006 Java earthquake and
estimates the slip parameter. In order to decide the other
parameters (length and width), the empirical formula based
on Allen et al. [33] is used. While Wells & Coppersmith
[34] is well known for providing the versatile empirical
equations, Allen et al. [33] offers the updated equations
reflecting more recent studies. In addition, the equations
by Allen et al. [33] are developed based on more large
earthquakes in their database, which makes them more
suitable for this study because this work involves large-
magnitude scenarios. The length and width are determined
by the following equations from Allen et al. [33].

logo(length) = —3.03 + 0.63(magnitude) )

log;o(width) = —1.01 + 0.35(magnitude) 3)
1 i 4.73

magnitude = Oglo(soll;)1+ . )

We run for 7T = 14400 s. We validate this choice by
running two simulations with the faults at the east and west
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Fig. 2 The area for emulation. It covers the sub-districts of Cila-
cap. The area is divided into 259 squares with the side length =
0.005° (approximately 550m). Every gauge is located at the centre of
the square cell. The yellow pins are specific gauge locations (whose

ends of the domain (Fig. 4) which demonstrate that we can
capture the maximum elevation of the tsunami.

Our earthquake sample is comprised of 44 events in the
magnitude range of M7.0 - M8.2 and a slip range of 2.0
m - 12 m. The slip of 2 m corresponds to an event with
M?7.0 and the slip of 12 m correlates with an M8.2 event
(Fig. 5b). We note that the largest recorded events in the
region are M7.7 (2006) and M7.8 (1994) [5]; therefore, the
upper range of our earthquake scenarios in this research
(M8.2) is considered larger than the recorded maximum
event (M7.8) in order to account for potential future large
earthquakes. As shown in Fig. 5b, the earthquake events are
approximately equally distributed in the magnitude range of
M7.0 - M8.2. For each scenario, a uniform slip distribution
on the fault surface is considered with no heterogeneity.

Table 1 Source parameters in JAGURS

Latitude  Longitude  Depth (km)  Length (km)  Width (km)
O O X X X

Dip (®) Strike (%) Rake (%) Slip (m)

10.0° 272.0° 90.0° O

In the bottom row, () means the corresponding source parameter is a
free parameter and x indicates that the source parameter is dependent
on the other parameters via the empirical formulas (2), (3) and (4)
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number is specified above the pin) used in the sequel. The 15 gauges
located at the centre points at the red squares will be averaged as our
quantity of interest in the output employed in the design of computer
experiments

4 Multi-fidelity GP emulator

The GP emulator is a versatile statistical surrogate
that mimics the input-output relationship of the tsunami
simulator. It is trained over a set of input points, called
a design, whose size is much reduced compared to the
number of predictions. The source parameters (points in the
space of input parameters) for training are chosen with the
specific purpose of capturing the input-output relationship.
This can be done for instance via one shot designs such
as Latin Hypercubes, or the sequential design algorithm
MICE (mutual information for computer experiments) that
adaptively selects the input values where the computer
simulator is evaluated to maximize the expected information
gain (mutual information) over the input space [21].
Despite the computational efficiency of JAGURS using
multiple nested grids (only running the finest resolution
locally around Cilacap), the computational cost per run still
makes the simulations for many inputs very challenging.
Therefore, we employ MLACSE [23], a multi-fidelity
GP emulator that exploits MICE to emulate the most
sophisticated version of JAGURS up to the finest level.
In this approach, we only run JAGURS up to the finest
resolution over a small subset of the runs, thereby saving
large amounts of computing time. The level 1 version uses
only a single grid file SDO1. The two nested grid files SDO1
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Fig.3 The area for the experimental design, longitude and latitude of the fault location. The northern red line is the contour line with the depth
60km (Slab2 [31]) and the southern green line denotes the Java trench. The location of the fault is assumed to fall in the area filled in red

and SDO2 are used for the level 2 version. The level 3
version is the most expensive and it requires three nested
grids, SDO1, SD02, and SD03. As the level of refinement
increases, the accuracy of the simulation improves. Thus,
the level 3 version is the most accurate whereas the level
1 provides the least accurate representation. We also assign
the level / simulation to the level / version of the grid
(! = 1,2, 3). In this paper, the configurations of JAGURS
are the same across every level, except for the number

—— West end
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Fig. 4 Time series of wave height at gauge 1 (Fig. 2, longitude=
109.0525°E, latitude = 7.7525°S). The red and blue lines correspond
to the scenarios where the rupture occurs at the east and west end. The
location of the west end is 103°E and 7.23°S and that of the east end
is 119°E, 10.31°S. Slip is 12m in both cases

of the grid files. In other words, the various versions
of JAGURS’ simulations differ only in the number of
the nested bathymetry files. The time step in the finite
difference method is 0.2 seconds for every version of
JAGURS. This time step is determined so that we can avoid
the numerical instability of Finite Differences calculations
according to the Courant Number criterion (https://github.
com/jagurs-admin/jagurs).

Let x denote the three-dimensional input vector com-
posed of the slip, longitude and latitude. The ranges of
these variables are given in the previous section ([2, 12] x
[103,119] x [O, 1]). The latitude is first expressed as the
proportion from the southern boundary to northern taking
its values in [0, 1] and then converted into the actual value
depending on the longitude. Furthermore, for a fixed value
of the location of the gauge ¢, 6 corresponding to a gauge j
(j=1,...,259, see Fig. 2), we define h; j(x) (I = 1,2, 3)
as the maximum wave elevation, i.e. hmax (¢, 6, x) for the
source parameters x, over the 4 hours of simulation given
by the level [ version of the grid set-up. We also define the
difference of the outputs from two successive grid levels as
follows and the telescopic sum of differences adds up to the
highest resolution simulation.

81,j(x) = hy j(x) ®)]

8.5 (x) = hyj(x) —hi_1j(x) (I =2,3) 6)
3

haj(x) = > 8,;(x) (7)

=1
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Fig.5 Experimental design obtained by MLASCE. The green pins denote the sample points of §; (x), orange pins 8, (x) and red pins 63 (x). Design
points shown (a): across longitude and latitude of §; (x), 82(x) and §3(x). (b) across slip and longitude of §; (x), 62(x) and 83(x)

For the purpose of choosing the design sequentially and
across levels, we need to provide an output quantity of
interest that is used to determine the number of samples (and
their actual locations at each level) as shown in Table 2.
We have employed in the past one representative output
location [19] to create the sequential design of computer
experiments. Indeed one point is enough to generate a
diverse design that reflects the input-output relationship:
there might be some different dependencies elsewhere in the
outputs but these may not affect much the design’s ability to
pick up the major modes of variation effectively. However,
in our new context of multiple resolutions, to make sure that
we are not providing a representative point in the outputs
that might skew the design towards a particular region of
the input space due to some spurious edge effect of cells
across levels, we decided to increase the robustness of the
quantity of interest. This quantity is now the average of
maximum wave heights at 15 gauges (the centre points at the
red squares in Fig. 2). It covers a region that is near shore,
over a region that covers multiple cells at all resolutions, to
pick up sensitivity near the locations of interest (onshore for
inundation), but not onshore itself where inundation might
result many zero values and where the topography is having
a very different impact across levels, possibly degrading the
design. The choice of the L shape for these 15 gauges is

Table 2 The typical cost (computational time) for each simulation

81 ) 3
Time (s) 1885(s) 7739(s) 13612(s)
No of Samples 30 10 4

The bottom row shows the numbers of samples obtained from
implementing MLASCE under the total computational budget 54
hours. 8 cores were used for implementing every simulation

@ Springer

rather arbitrary as it suits these constraints well. Note that
any reasonable set of gauges, with any geometry would be
suitable, as long as the input-output relationship enables
the sequential design across level to pick up variations
and allocate points in the input space providing the most
information for the design to be most efficient. Note that we
computed these arbitrary average across cells for all levels,
but these 15 cells used the center as a representative, in order
to simplify the computation but an alternative could be to
compute the matching averages over cells for all resolutions.
The mismatch is not consequential in these area as we also
average over 15 cells to dampen any very local effect. The
key point is to generate a reasonably efficient design with
points located in the input space where the action is. This
average over 15 cells is used in implementing MLASCE:
h1(x), ha(x), and h3(x) are the average of the maximum
wave heights at these locations from the level 1, level 2, and
level 3 grids used in the JAGURS simulations.

15
hi(x) =Y hij(x)/15 (=1,2,3)

j=1

h3(x) is decomposed into the sum of the increments in the
same way

(31()6) = h](x) (8)

8i(x) = hi(x) —hi1(x) (i =2,3) ©)
3

h3(x) = ) 8i(x). (10)

i=1

By decomposing /3 (x) into the incremental functions §; (x),
we can avoid the huge cost of running /3 (x) numerous times
and construct a good approximation of 23 (x) by utilising the
emulation of the cheaper simulations /1 (x) and h(x) and
add the incremental effect of §3(x) where necessary. We can
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record the maximum wave height at every gauge (Fig. 2)
per run of A;(x) given a certain x. Similarly, by running
SDO02 and SDO03, the difference of these maximum wave
heights between the two grid versions in JAGURS is also
stored. During the process of MICE, we construct mutually
independent GPs m;(x) ~ GP(0, K;(x,x")) (I = 1,2,3)
to emulate §; (x). We employ the Matérn 5/2 kernel for the
choice of K;(x, x). This kernel is smooth enough to avoid
the GP becoming too rough whilst not being excessively
smooth and it is a common choice for modelling physical
relationships [11, 12].

The total budget available for our computation is 54
hours. We treat the computational time of the simulations
as the cost. The costs of these 3 simulations are given
in Table 2. After implementing MLASCE, we obtain
the experimental designs X; n, = (X,1,..., Xy, N,)T and
S (Xin) = @By, 8 G )" forl = 1,2,3
where N; is the number of the design points at level [
and x;, (n = 1,...N;) denotes the three dimensional
input vector chosen by MLASCE. We construct the
multi-fidelity GP emulators based on the record of
{Xi1,n;. 81,j(Xi,n,)} by fitting the mutually independent GPs
m,j ~ GP(0,K; (x,x")) to each & (x) for every gauge
J where K; j(x,x’) is the Matérn 5/2 kernel for every [

. . L.
and j. We use the posterior mean function m LL” x) =
81 .
Zle m l"j’ v, () (L = 1,2,3) for the level L emulation of
the maximum wave height at gauge j given a new input x.
The expression of mfljj N, (%) is given by the usual kriging
equation:

S8 T —
ml,l}‘j,Nl @) =K (x. Xin) Kij(Xing Xin) 805X

5 Emulation results
5.1 Experimental design and emulated wave heights

By implementing the above-mentioned procedure,
MLASCE, we collected 30 evaluations for the level 1 ver-
sion of JAGURS’simulations, 10 for the level 2 and 4 for
the level 3, see Table 2. These source parameters are shown
in Fig. 5a and b.

In order to understand how the maximum wave height
is emulated, we choose three representative gauges 259,
110, and 47 on the shoreline (see Fig. 2). Here, we also
create another emulator, the emulator based on the samples
only from the finest version of the grid set-up, denoted
h3,j(x) (under the same budget), and coined the single level
emulator. The comparison with the single level emulator
provides an insight into the usefulness of the multi-fidelity
emulators. Figure 6a — ¢ (longitude-slip coordinate) and 7a —
¢ (longitude-latitude coordinate) show the two-dimensional

. 8 8
plots of the multi-level emulators m LL‘259 (x),m L“m (x) and
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(a) The emulators at gauge 259.
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(b) The emulators at gauge 47.

Fig.6 Multi-level emulators of wave height simulated by JAGURS at
three gauges against longitude and slip (latitude fixed corresponding
to a depth of 40 km). Red wireframe: level 1. Blue wireframe: level 2.
Yellow surface: level 1. The Z-axis denotes the maximum wave height
(meters), the X-axis and Y-axis denote the longitude (°) and slip (m)

miL"” (x) (L = 1,2, 3). InFigs. 6a — 7b, the clear pattern of
earthquake scenarios are presented. Overall, the maximum
wave height is expected to be higher as the value of slip
increases while the location of the fault exhibits a different
pattern.

Since the longitude of Cilacap is approximately 109°E,
the emulators give the higher maximum wave height as
the fault location nears 109°E. Therefore, we have to pay
more attention to the earthquakes occurring in the area close
to the longitude 109°E. The level 3 emulator modifies the
pattern given by the level 1 and 2 emulators and the level
2 emulator provides the larger corrections to the level 1
emulator at this gauge location. In this specific case, level
1 simulations tend to give higher wave elevations than
the higher level SD02 and SDO03 simulations do. This is
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(b) The emulators at gauge 47.

Fig.7 Multi-level emulators of wave height simulated by JAGURS at
three gauges against longitude and latitude (slip fixed at 8 m). Red
surface: level 1. Blue surface: level 2. Yellow surface: level 3. The
single level emulator is. represented by a green surface. The Z-axis
denotes the maximum wave height (meters), the X-axis and Y-axis
denote the longitude and latitude

partially explained by the fact that the level 1 grid (SDOI)
has the coarser spatial resolution, thereby ignores the details
of the geographical characteristics, such as the obstacles
impeding the tidal wave. Thus, the higher level simulations
modify the tsunami propagation by accounting for the
higher resolution topography and coastline. Figure 8a (for
the level 2 increment) and b (for the level 3 increment) show
how the predictions by the level 1 emulator are corrected
as the uncertain inputs change. The value of the latitude
of the rupture point is relatively non-influential as we can
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see very small variations in Fig. 7a — c. As noted earlier,
the longitude influences the maximum tsunami elevations
to a large extent and the amount of slip directly affects the
predicted values. A similar pattern occurs in other locations,
as for example in gauges 47 and 110. In particular, Fig. 6b
shows the sharp modifications to the maximum wave height
given by the level 2 and level 3 emulators. The level 1
simulation tends to overpredict the maximum wave height
at this location. The complexity of the bathymetry is only
captured by the computationally expensive fine mesh grids
and the multi-fidelity method is beneficial in incorporating
this information where necessary.

We can see the vivid contrast between the multi-fidelity
emulator by MLASCE and the single level 3 emulator in
Fig. 9a — c. We compare the multi-fidelity emulator with
one built from an ensemble of simulations at nested level
3 only. Only 24 simulations can be created using MICE
for the single level 3 v. a set of 30, 10, and 4 simulations
respectively across levels 1, 2, and 3 for the multilevel
emulator, with the same budget. The multilevel emulator at
level 3 is substantially superior to the single level emulator
at level 3 (as can be seen in the next section). The differences
are large since the shape is complex and the single level
emulator cannot be built properly with less than 10 runs per
parameter (i.e. 30 runs for the three parameters), the usual
rule of thumb for GP fitting. cOur multi-fidelity emulators
show the clear dependence on the longitude of the rupture
location while the latitude does not seem significant. The
same pattern of overestimation at level SDO1 and correction
at levels SD02 and SDO03 occurs at other gauges.

5.2 Validating the result

In the previous section we concluded that the quality of
the physical representation of the emulated input-output
relationship of the multi-fidelity was different from the one
obtained by a single level GP emulator at level SD03 (using
the same training budget). Although the multi-fidelity GP
emulators give plausible results, validating the reliability of
these outputs is an indispensable task.

First, we validate the reliability of the emulations of the
increments (&;,j(x)) and employ Leave-One-Out (L-O-O)
diagnostics for this purpose, which is a common way of
validation in the community [11, 12]. Our three sets of
training data of the three levels, which are obtained from
evaluating the level 1, 2, and 3 simulators, respectively
consist of 30, 10, and 4 pairs of input—output quantities of
81,j(x) (I: level, j: gauge). In L-O-O, a reduced training
set (dropping one sample from the original data set) is
employed to build an emulator, which is then used to predict
the output at inputs of the one sample that was left out. The
predicted output is compared with the actual output of this
sample. We drop one sample point from the training sample
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Fig.8 The emulations of the
increments at gauge 259 are
represented by the green (a) and
red (b) surface. The Z-axis
denotes the maximum wave
height (meters), while the X-axis
and Y-axis denote the longitude
and slip. The depth is 30 km
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for validation, so it is not used in training. To show that
our multi-fidelity emulators perform well regardless of the
specific gauges, we compute the average of the root mean
square errors between the predicted and true values at all
gauges. As the prediction variance is seen as the standard
tool of measuring the reliability of the prediction values in
the community (e.g. [11]), we also calculate the average
value of the prediction variances accordingly. Table 3 shows
the result of this L-O-O for the emulations of the increments
d;,j(x) for every level at all gauges. The errors are low for
level 1 considering the values (RMSE of 0.42 for up to 12
m wave heights, but only acceptable for levels 2 and 3 as
these differences take values over a range of roughly 1.5
and 0.7 m respectively for errors of 0.92 m and 0.29 m. The

level 2 shows a slightly higher variance proportionally when
compared to the other levels, which is attributed to the small
number of samples compared to its variations.

Second, we validate the results of the performance of the
multi-fidelity emulators, comparing the predictions to the
true output given by the level 3 simulation. The input-output
data of the level 3 simulation is the same as the training data
set used for building the single level emulator SD03. None
of these data points are included in the experimental designs
for our multi-fidelity emulators. We compute the average of
the root mean square errors between the true output value
and the predictions by the multi-fidelity emulators (level 1,
2, and 3) evaluated at the corresponding inputs. The average
of the prediction variances is also calculated. Table 4 shows
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Fig.9 The yellow surface
represents the level 3
(multi-fidelity) emulator. The
green surface represents the
single level emulator (level 3
simulations only). The depth is
40 km. The Z-axis denotes the

maximum wave height (meters),

while the X-axis and Y-axis
denote the longitude and slip
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Table 3 L-O-O for the emulations of the increments & ;(x).: Root
mean square error (RMSE in meters) and average of predictive
variances (o)

Increment Level 1 Level 2 Level 3
RMSE (m) 0.41975 0.92617 0.28566
op 0.3000 0.5093 0.1360

the performances provided by the multi-fidelity emulators.
As the level increases, the prediction error tends to decrease
although the difference between the level 1 and 2 emulators
is small, which is partially explained by observing that the
number of the data points for constructing the emulation
of the increment §; ; is relatively small compared to the
values ofd ;. The prediction variance increases as the level
increases since we simply add up the predictive variances
of the emulation of each increment §; ;. In other words, the
uncertainty of emulating §; ; of each level is incorporated
into the higher levels of the multi-fidelity emulators.
Finally, we show the comparison between the predicted
and true maximum wave height at all of the gauges 1-259.
Here, the true maximum wave height means the evaluation
given by the level 3 grid set-up. The source parameters are
fixed in order to evaluate a catastrophic scenario, which
is represented by the longitude 109°E, latitude 8.554°S
(corresponding to the depth 40 km) and slip 9m, which is
not quite close to the training samples for every emulator.
Figure 10b shows the result given by our multi-fidelity
emulator and Fig. 10c is the true output from the level
3 simulation. The maximum wave height on the land is
approximated by our emulator, and both our emulator and
the simulation present similar maximum water elevation
patterns. However, our emulator tends to give seemingly
erroneous higher wave height (albeit by a tiny amount
only by less than 20 cm on land). The reason is quite
similar to that explained before. Since the level 1 grid
set-up is unable to consider the detailed information of
the geographical obstacles in its computation, it is likely
to produce an overestimated result in this case. On the
other hand, the single level emulator based on only the
samples from the level 3 simulation seems inadequate
in predicting the inundation in Cilacap (Fig. 10c). As
explained, the predictions by this single level emulation
are heavily skewed towards around O meter hence the

Table 4 Performance by the multi-fidelity emulators using 1 (one
fidelity), 2 or 3 levels: Root mean square error (RMSE in meters) and
average of predictive variances (o))

Increment Level 1 Level 2 Level 3
RMSE (m) 0.87750 0.87241 0.80777
op 0.2414 0.6571 0.7613

predicted wave heights show the similar pattern. Under the
limited budget of computational resources (time), the multi-
fidelity emulations perform much better than the single level
emulation. Note that the squares in Fig. 10b—c (the same
squares in Fig. 2) are not the grids of any of the bathymetry
files.

5.3 Uncertainty propagation

Once the emulators are built, the maximum tsunami
elevation can be predicted for any input scenario. The
prediction involves the utilisation of the built emulator with
a given set of inputs to calculate the mean predictions
and their uncertainty on the outputs. Uncertainties are fully
propagated to display sometimes complex distributions
of outputs such as skewed distributions (as in the
case below): variance would not be enough to describe
such uncertainties. As the papers investigating tsunami
emulations demonstrate [16, 18, 19], emulation provides
a complete description of uncertainties through the full
pdf not just mean and variance as in traditional analyses.
The uncertainties in the inputs can be quantified by their
distributions, which can be modified to investigate different
scenarios. A beta distribution and uniform distribution are
the common tools and employed for each parameter, from
which 2,000 scenarios are randomly selected.

The shape parameters of the distributions can be utilised
to express the scientific knowledge about the source.
There are three free input (source) parameters, longitude,
latitude, and slip, and we prepare the corresponding beta
distributions for latitude and slip and uniform distribution
for longitude. Unfortunately, little is known about the
characteristics of these parameters. Therefore, we set the
shape parameters for the slip so that the mode is 10, which
corresponds to the upper range of earthquake scenarios that
we wish to explore here. Due to the wide range of the
longitude, it is unlikely that the location of the rupture with
respect to the longitude will be known in advance, a uniform
distribution is therefore used to express this uncertainty. We
set the mode of the latitude as 0.5, which is the central value
of the domain of experiment, and the shape parameter of
this beta distribution is determined accordingly. Note that
due to the complex shape of the boundary of the domain
of experiment, the design of the latitude takes its value
in [0, 1], which is the proportion from the southern to the
northern boundary, then transformed into the actual value.

The distributions of these three source parameters are
shown in Fig. 11a —c. The shapes of these histograms match
the original theoretical distributions we have chosen. We
selected two representative points, one offshore and one on
land (Fig. 2), to describe the distributions of the maximum
wave elevations resulting from these source parameters as
inputs. Figure 11d shows the result. As demonstrated in
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(b)

Fig. 10 Comparison of emulated and true wave heights (meters) with
the same source parameters: (a) true maximum wave heights computed
by the level 3 simulation at the gauges. (b) multi-level emulation of the

Section 5.1, the maximum wave elevations crucially depend
on the rupture location even when the value of the slip
is close to its maximum. Figure 11d corroborates this
observation from a different angle. The two distributions
are skewed toward the minimum value, O - 1 meters,
since the tsunami elevations drastically increase only when
the longitude of the rupture place is close to Cilacap.
However, if the rupture occurs at around longitude 109°E,
higher wave heights are predicted and these phenomena
cannot be ignored since the distributions are relatively
fat-tailed.

We further offer 50th and 90th percentiles of the tsunami
heights at all gauges (Fig. 12a and b). Figure 12a describes
that relatively high tsunami elevations (1-2 meters) can
occur even on the land close to the shoreline, which
implies that the tsunami risk is high, with high probability.
Figure 12b provides a disastrous scenario. The predicted
wave height on the shoreline and nearby land is more than 3
meters and this result is consistent with the similar scenario
(slip 9 m and longitude 109°E) in Fig. 10a. We note again
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maximum wave heights at the gauges. (c) single level emulation of the
maximum wave heights at the gauges. Slip 9m, longitude 109°E, and
latitude (8.554°S) that corresponds to the depth 40 km

that the squares in Fig. 12a—b (the same squares in Fig. 2)
are not the grids of any of the bathymetry files.

It should be emphasized that only a few milliseconds are
necessary to obtain the entire predictions per scenario with
our multi-fidelity emulator while the expensive simulation
needs more than hours. Therefore, our methodology
provides fast and exhaustive scenario assessments with
good prediction accuracy.

6 Conclusions

In this paper, a multi-fidelity GP emulator was employed
to efficiently perform many computational experiments to
evaluate the earthquake-generated tsunami hazard in Cila-
cap in Java, Indonesia. This approach provided an infor-
mative, innovative construction of the statistical emulators,
which overcomes the problem of the limited amount of com-
putational time. It forms the first study of its kind, to the
authors’ knowledge, which involves the application of a
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Fig. 11 Hypothetical histograms, for the set of future events con-
sidered here, of the three source parameters (1la)-(11c) used as
inputs. The resulting histograms (obtained by emulation of the tsunami

multi-fidelity statistical emulator with a sequential design
algorithm for real-case tsunami hazard prediction. Using
three levels of computations, from low to high-resolution, in
Cilacap, the maximum tsunami wave heights were predicted
at 259 offshore and onshore locations with the utilisation of
the emulators. Following the successful construction of the
emulators, 2,000 earthquake scenarios were predicted using
distributions on the values of slip, and the location of the
faults. These distributions express the current reflection on
the possible rupture scenarios in the region but can be fur-
ther refined in the future, to address added knowledge on
the source characteristics. The predictions showed a high
dependence of the maximum wave heights on the longitude
of the rupture location as well as the amount of the slip. The
tsunami elevation becomes threatening suddenly when the
longitude of the rupture location becomes closer to that of
Cilacap with a high amount of slip. The distributions of the
maximum wave heights are heavily skewed toward 0 - 0.5
meters; nevertheless, these distributions are fat-tailed, which
implies that a high tsunami risk is not negligible. In fact,

0.0 0.2 0.4 0.6 0.8 1.0

Latitude
(b) Latitude
400
B Gauge 61
. Gauge 1 |
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(d) Maximum wave elevations

simulator) of the maximum wave elevations outputs at gauge 1 (red)
and 61 (blue) are shown in (11d)

more than 1-meter maximum tsunami heights are predicted
on the shoreline of Cilacap as the 50th percentiles show.
Furthermore, the 90th percentiles are more severe and result
in more than 2 meters high for the tsunami heights onshore.

There are some aspects that need to be considered in
future work to further refine the probabilistic outputs. First,
the empirical equations of the source parameters can be
made more realistic. Indeed, there may be a correlation
between the amount of slip and the depth of the rupture
place, which are currently independent of each other.
Second, the distributions of the source parameters for
future predictions should reflect the specific details of the
Indonesian subduction zone. The present versions of these
distributions are simply independent of each other, and the
shape parameters would be determined to incorporate prior
knowledge. Third, the number of levels can be modified.
The increment from level 2 to level 3 is relatively small
compared to that from level 1 to level 2. Taking into account
the massive computational cost for the level 3 simulation,
one could use a more balanced combination of the number
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Fig. 12 The 50th (a) and 90th
(b) percentiles of the tsunami
elevations at all gauges

of the simulations and magnitude of the increments. Finally,
producing high resolution predictions of tsunami elevations
in the entire island of Java would be more beneficial for
stakeholders and hazard practitioners. A potential obstacle
of this attempt would be computational limitations in terms
of time and memory management.
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