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A novel deep learning approach 
for typhoon‑induced storm 
surge modeling through efficient 
emulation of wind and pressure 
fields
Iyan E. Mulia 1,2*, Naonori Ueda 1,2, Takemasa Miyoshi 1,3, Takumu Iwamoto 4 & 
Mohammad Heidarzadeh 5

Modeling typhoon‑induced storm surges requires 10‑m wind and sea level pressure fields as forcings, 
commonly obtained using parametric models or a fully dynamical simulation by numerical weather 
prediction (NWP) models. The parametric models are generally less accurate than the full‑physics 
models of the NWP, but they are often preferred owing to their computational efficiency facilitating 
rapid uncertainty quantification. Here, we propose using a deep learning method based on generative 
adversarial networks (GAN) to translate the parametric model outputs into a more realistic 
atmospheric forcings structure resembling the NWP model results. Additionally, we introduce lead‑lag 
parameters to incorporate a forecasting feature in our model. Thirty‑four historical typhoon events 
from 1981 to 2012 are selected to train the GAN, followed by storm surge simulations for the four 
most recent events. The proposed method efficiently transforms the parametric model into realistic 
forcing fields by a standard desktop computer within a few seconds. The results show that the storm 
surge model accuracy with forcings generated by GAN is comparable to that of the NWP model 
and outperforms the parametric model. Our novel GAN model offers an alternative for rapid storm 
forecasting and can potentially combine varied data, such as those from satellite images, to improve 
the forecasts further.

The destructive force of typhoons impacting coastal areas is mainly attributed to the accompanying impacts 
from waves and storm  surges1, possibly increasing future severity due to coastal population growth and climate 
change effects on the ocean and  atmosphere2–4. Efforts have been made globally to mitigate the disaster, one of 
which is reflected in advancements in storm surge numerical  models5. There are many successful applications 
of storm surge modeling to hindcast notable historical  events6–9 revealing the individual catastrophe character-
istics. Storm surge models can also be implemented as an integral part of operational forecasting  systems10,11. 
Further enhancements of the present state-of-the-art models for storm surge simulations are expected to lean 
towards computational frameworks as the physical understandings of such a natural phenomenon have relatively 
 matured5.

Storm surge models rely on wind and pressure fields acting as forcings for the hydrodynamic modeling of 
surge propagation and runup in coastal areas. A straightforward way to obtain these forcings is to use parametric 
models of typhoons, namely parameterized statistical formulas derived from past  observations12–14. Parametric 
models have been reported to work well for storm surge  simulations15,16. Nevertheless, poor predictive skills are 
typically exhibited in areas far from the typhoon  center8,17 or during the typhoon transitioning stage into an extra-
tropical cyclone and landfall due to topographic  effects18. Similarly, standard mesoscale NWP models also exhibit 
some drawbacks partly caused by the insufficient grid resolutions for resolving a typhoon’s  intensity19. Recent 
atmospheric and computer science developments have led to substantial improvements in the NWP models 
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using a finer NWP model grid  resolution20 or a data assimilation  scheme21 to improve the typhoon structure 
resolvability. Therefore, many recent studies advocated using NWP models for storm surge  simulations8,9,17,22.

The remaining issue of the NWP model implementation in storm surge modeling is related to the computa-
tional cost, which is significantly higher than that required for the parametric models. Furthermore, an ensemble 
storm surge prediction from multiple simulations is often preferred to provide a range of possible solutions rather 
than a single predicted value, thus facilitating uncertainty  quantification9,17. The ensemble modeling approach 
will inevitably incur more computational efforts. Such obstacles restrict the realization of NWP models in regions 
with limited computational resources, particularly when the storm surge model is needed for an operational 
forecasting system. As an alternate solution, here we propose a method based on deep learning known for its 
computational efficiency compared to physics-based models. It has recently gained more attention and has been 
implemented in numerous geophysical  applications23–25.

Deep learning or machine learning with various architectural building blocks has also been specifically 
adopted in storm surge-related  studies26–30. Generally, these studies consider atmospheric and oceanic variables 
as predictors for the peak or time series of surges at specified points of interest on regional and global scales. 
Such a model configuration would benefit operational forecasting systems as it can provide accurate and rapid 
storm surge estimates, albeit it does not simulate a spatiotemporal evolution of storm surges. Thus, we explore 
a different approach for simulating storm surges focusing on the efficient emulation of forcing fields. This is 
because the dynamical atmospheric model is, to a large extent, the computationally demanding portion in the 
storm surge modeling compared to its hydrodynamics counterpart. The rationale of our approach is that the 
method can be used to study the physics of hydrodynamic responses to typhoons through a standard numerical 
simulation as well as to operate effectively in a forecasting mode. Our approach can also be useful for long-term 
risk assessment, typically estimated using statistical typhoon  models31.

Materials and methods
Data acquisition. We obtain typhoon best track data required as inputs for the parametric model from 
the International Best Track Archive for Climate Stewardship (IBTrACS)32,33 and resample the data at one-hour 
intervals to pair with the NWP model outputs. Here, we refer to the NWP model to the Japanese 55-year Rea-
nalysis (JRA-55)34 downscaled to a 5-km horizontal resolution named the Dynamical Regional Downscaling 
Using the JRA-55 Reanalysis (DSJRA-55)35 provided by the Japan Meteorological Agency (JMA). The reanalysis 
was conducted using a state-of-the-art data assimilation method incorporating various observational datasets 
overlooked in the operational system. Moreover, typhoon bogus fields from best track data were assimilated in 
the JRA-5534. Therefore, it yields the NWP model datasets that better resolve the typhoon’s intensity and track. 
We limit the area of the NWP model to fit our preferred domain depicted in Fig. 1a and select a period at which 
the IBTrACS and DSJRA-55 datasets overlap, that is, between 1981 and 2012. To validate the atmospheric model 
results, we use observed wind speed and sea level pressure at four meteorological stations administered by the 
Japan Oceanographic Data Center (JODC) with station locations marked in Fig. 1a.

The bathymetry for our storm surge simulations is based on two datasets: the General Bathymetric Chart of 
the Oceans (GEBCO_2020 Grid) with the original 15 arc-sec grid resolution for the open ocean (Domain 1 in 
Fig. 1a) and the Japan Hydrographic Association’s M7001 bathymetric contours for the nearshore region (Domain 
2 in Fig. 1a). The overview of water depth profile from the above bathymetry data in our storm surge modeling 
domain is shown in Fig. 1a. The storm surge model is concentrated around Tokyo Bay, a crucial water body near 
the capital. Therefore, we compare our simulations with observed storm surges at six tide gauges in the vicinity 
of Tokyo Bay (see inset in Fig. 1a for locations) managed by the JMA. The surge is extracted from the observed 
water level by subtracting the predicted astronomical tide that the JMA also provides.

Parametric model. While the NWP model is based on the precomputed reanalysis, we run the parametric 
model for the considered typhoon events using the Holland 1980  formula12, which has been widely adopted in 
storm surge  modeling15,16,36. The inputs for this model along the typhoon tracks and durations are the central 
pressure, the maximum wind speed, and the radius of maximum winds (Rmax). Most input information is gener-
ally available in the IBTrACS dataset except for the Rmax. We impute the missing values of Rmax in certain typhoon 
events using a technique proposed by Takagi and  Wu37 derived from the radius of the 50 kt wind (R50). A surface 
wind reduction factor of 0.9 is applied to adjust the wind fields to a 10-m height  wind31. The domain boundary 
(Fig. 1a) and grid size (5 km) for the parametric model are the same as the predetermined NWP model resulting 
in a square domain consisting of 512 × 512 grid points. The exact dimension for the NWP and the parametric 
models is intended for ease of transformation by deep learning.

Deep learning. We split the simulated hourly data from pairs of the parametric and NWP models into a 
training set consisting of typhoon events during the period 1981–2009 (34 events) and a test set comprising the 
four latest events in the dataset that are: the 2009 Typhoon Melor, the 2011 Typhoon Roke, the 2012 Typhoon 
Guchol, and the 2012 Typhoon Jelawat. The complete list of typhoon events with their respective simulation 
times considered in this study is tabulated in Supplementary Table 1. The total number of data in the training set 
is 3478, and it is 457 in the test set. The training and test sets distributions are shown in Fig. 1a for the typhoon 
tracks and in Fig. 1b for central pressure, maximum wind speed, and radius of maximum winds. These distri-
butions suggest that the test set is within the scope of the training set, which is necessary for deep learning or 
machine learning methods that commonly do not possess an extrapolation property.

We implement a deep learning method based on generative adversarial networks (GAN)38, constituting a 
generator to produce synthetic images and a discriminator to distinguish between real or target and the gener-
ated images. More specifically, we utilize a variant of GAN known as pix2pix developed for image-to-image 
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translation  problems39. The pix2pix algorithm is essentially a conditional GAN, where the output is conditional 
on the given input values instead of random latent space as in the initially-proposed  GAN38. The generator in the 
pix2pix is taken from the U-Net, a U-shaped encoder-decoder network  architecture40, while the discriminator 
is based on the PatchGAN classifier penalizing structure at the scale of local image  patches41. This study uses the 
same architecture and hyperparameters as the original pix2pix  algorithm39. However, we introduce a specific 
input–output configuration by incorporating lead-lag parameters that suit our application. For conciseness, 
hereafter, we refer to our deep learning method as GAN. The schematic of our GAN model is depicted in Fig. 2.

Our GAN input channels are two-dimensional fields of pressure (P) and wind components in eastward (U) 
and northward (V) directions from the parametric model with a dimension of 512 × 512 and a grid size of 5 km. 
Moreover, the input channels are extended to account for the lag times specified at two hours, four hours, and 
six hours. For instance, inputs for the 4-h lag time contain forcing fields (P, U, and V) from t to t − 4 h result-
ing in 15 channels. The optimal lag time is determined before applying the proposed GAN model to the storm 
surge simulations, discussed in detail in the subsequent section. Correspondingly, the output or target consists 
of forcing fields (P, U, and V) from the NWP model, with the same dimension and grid size as the parametric 
model. However, unlike the input, the output has three channels fixed to represent a single instance of time. 
Therefore, multiple models are built for different lead times. We design our model to perform nowcasting at time 
t and forecasting with two lead times at t + 6 h and t + 12 h. After normalizing the data to (− 1; 1), each model 
is trained for 200 epochs, and as a typical GAN model, only the generator is needed to make predictions once 
the training is complete.

Determination of lead and lag times. We create a suite of GAN models with different lead and lag times 
combinations. The experiment aims at finding the optimal lag time, an important hyperparameter in forecasting 
 models42. Using the test set, we calculate a root mean square error (RMSE) of simulated against observed time 
series of wind and sea level pressure at all considered meteorological stations. Figure 3 shows the RMSE com-
parison between the combinatorial models. It is difficult to determine a single lag time with consistent predictive 
skills from the wind errors (Fig. 3a). For example, a 4-h lag time exhibits the smallest RMSE only for the 12-h 
lead time. However, the error variations are arguably negligible for the overall lag times relative to the maximum 

Figure 1.  (a) NWP and parametric models domain and typhoon tracks in the training and test sets. Nested 
layers of the storm surge model are annotated by Domain 1 and 2, overlaid with water depth and observation 
stations. (b) Distributions of central pressure (top), maximum wind speed (mid), and radius of maximum winds 
(bottom) in the training and test sets. The map was created using the Matplotlib Basemap Toolkit (https:// matpl 
otlib. org/ basem ap/) in Python.

https://matplotlib.org/basemap/
https://matplotlib.org/basemap/
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winds in the test set (see the mid panel of Fig. 1b). Contrarily, from the sea level pressure errors (Fig. 3b), it is 
evident that the lag time of four hours results in the smallest RMSE for all lead times. Therefore, we opt for the 
lag time of four hours as the optimal value for our GAN model.

Storm surge modeling. To simulate the storm surges, we employ a free-surface and terrain-following 
coordinate model known as the Regional Ocean Modeling System (ROMS)43. Previous studies have demon-
strated the efficacy of ROMS in storm surge  modeling7,44,45. Here, the model is configured to only account for the 
surge dynamics during typhoon occurrences without considering the interaction with tides and wind waves. We 
use a two-layer nested grid system as indicated in Fig. 1a with grid sizes of 5 km and 1 km for the parent (Domain 
1 in Fig. 1a) and child (Domain 2 in Fig. 1a) domains, respectively. Similar to a study by Heidarzadeh et al.7, three 
vertical layers are used in our storm surge simulations. We set a minimum depth of 1 m because our model does 
not account for the inundation and the horizontal viscosity at 1000  m2/s. To convert the wind speed to the wind 

Figure 2.  The schematic and architecture of the proposed GAN model. The input consists of atmospheric 
forcings from the parametric model with the specified lag times. The output is atmospheric forcings from the 
NWP model with a single time instance at t, t + 6 h, and t + 12 h. The figure was created using the Matplotlib 
Basemap Toolkit (https:// matpl otlib. org/ basem ap/) in Python and Inkscape (https:// inksc ape. org/).

Figure 3.  Model errors relative to lead and lag times. The RMSE is calculated from simulated versus observed 
time series of forcings at all meteorological stations. (a) Wind speed. (b) Sea level pressure.

https://matplotlib.org/basemap/
https://inkscape.org/
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stress, we use the bulk flux module implemented in ROMS based on the Coupled Ocean–Atmosphere Response 
Experiment (COARE 3.0)  algorithm46. The time integration of ROMS requires a decomposition of 3D fields 
into baroclinic and barotropic parts to facilitate the calculation of the pressure-gradient force. Thus, we set the 
simulation time steps for the parent and child grids at 45 s and 15 s in the baroclinic mode and 4.5 s and 1.5 s in 
the barotropic mode. For comparisons, we run the storm surge simulations for the four selected typhoon events 
in the test set using atmospheric forcings from the parametric, NWP, and GAN models.

Results and discussion
Simulated wind and pressure fields. Figure 4 shows snapshots of simulated wind fields for the 2009 
Typhoon Melor by the parametric model (Fig. 4a), the NWP model (Fig. 4b), and GAN models (Fig. 4c–e) at 
different lead times. Here, the parametric and the NWP models are not meant for forecasting, comparable to 
the GAN model at t in Fig. 4c. GAN models reasonably approximate the wind fields of the NWP model and 
maintain consistent structural patterns over different lead times. The topographic effects on the wind are well-
captured by the GAN models characterized by a decrease in wind speed over land. Furthermore, the proposed 
GAN models can also somewhat simulate the typhoon transitioning stage into an extratropical cyclone, which 
the conventional parametric model hardly achieves. Nevertheless, the GAN models do not adequately simulate 
the north-easterly wind, an essential factor for simulating storm surges in the northern part of Japan. Also, the 
decreasing accuracy is expected at longer lead times, as exemplified in Fig. 3. Similar results are manifested in 
other typhoon events on the test set (Supplementary Figs. 1–3).

Comparisons between observed and simulated wind speed at the considered meteorological stations are 
shown in Fig. 5. The parametric model accurately predicts the peaks of wind speed at most stations ranging 
from 22 to 37 m/s with a modest overestimation exhibited at Tokyo station. This overestimation tendency is 
also visible at other events and stations (Supplementary Figs. 4–6), which is in line with previous  studies17,47. 
For the 2011 Typhoon Roke (Supplementary Fig. 4) at Tokyo station, the parametric model even results in a 
peak of wind speed of ~ 34 m/s, more than 1.5 times higher than the observation of 21 m/s. On top of that, the 
nature of the parametric model hinders a detailed approximation of small-scale variations in the observed wind 
time series. Accordingly, the simulated winds by the parametric model have smoother profiles with rather short 
periods compared to observations. The NWP model, on the other hand, shows better details and a wider spec-
trum of wave periods but tends to underestimate the peaks slightly. The GAN models would naturally inherit 
the characteristic of the NWP model as per the intended design, albeit the level of agreement varies for different 
stations and events (Supplementary Figs. 4–6).

The snapshots of simulated sea level pressure fields for the 2009 Typhoon Melor are shown in Fig. 6. Addition-
ally, an animation of simulated sea level pressure and wind fields for this event from all the models is provided 
in Supplementary Video 1. The spatial distribution of sea level pressure by the parametric model (Fig. 6a) shows 
simpler shapes than the other models with significant low-pressure values confined near the typhoon center. 
In contrast, the NWP model results in a relatively dispersed pressure distribution (Fig. 6b), which is physically 
more plausible. To some degree, GAN models for different lead times (Fig. 6c–e) replicate the NWP pressure 
fields, particularly around the typhoon’s inner core structure. There are somewhat erroneous low-pressure values 
northwest of the typhoon center, also found in other events (Supplementary Figs. 7–9). This is likely caused by 
the generalization of patterns captured in the training set. However, such a spurious occurrence is insignificant 
and has minimal effects on the corresponding storm surge.

We plot the time series comparisons between observed and simulated sea level pressure in Fig. 7. The simu-
lated sea level pressure by the parametric model at Shionomisaki and Daiosaki is quite accurate. However, the 
model fails to predict the lowest pressure values of 989 hPa and 986 hPa at Irosaki and Tokyo, respectively. The 
poor parametric model’s performance is possibly related to the farther distances of the latter two stations to the 
typhoon center than the former stations. As can be seen from the typhoon tracks (Fig. 1), the relative typhoon 
track-to-stations distance for the remaining events in the test set is almost similar to the 2009 Typhoon Melor 
event. Therefore, the resemblance of predictive skills for other events is anticipated (Supplementary Figs. 10–12). 
The overall GAN models for various lead times mimic the NWP model results, especially near the primary curve 
of lowest pressure values at all stations, which play a pivotal role in the storm surge model accuracy.

Simulated storm surges. Figure 8 shows snapshots of the simulated storm surge during the 2009 Typhoon 
Melor. The entire storm surge simulations for this event using forcings from parametric, NWP, and GAN models 
with a one-hour interval are presented in a video file (Supplementary Video 2). From the atmospheric modeling 
results, it is foreseen that the corresponding storm surges with forcings from the NWP (Fig.  8b) and GAN 
models (Fig. 8c–e) would produce more realistic hydrodynamics responses than that of the parametric model 
(Fig. 8a). As an illustration, a bulge of sea surface caused by the tangential wind stress and inverse barometric 
effects covering appreciable surge heights of more than ~ 0.2 m using the NWP model generally matches the 
GAN model results at t (Fig. 8c) and t + 6 h (Fig. 8d). The extent of this high water surface elevation level propa-
gating along the typhoon track correlated with the scale of the weather system by the parametric model is much 
smaller than both the NWP and GAN models. This comparison result, in conjunction with the inclusion of the 
forecasting feature, may highlight the advantage of GAN models in emulating the forcing fields.

However, despite the satisfactory performance in general, the method is still subjected to several limitations. 
A notable discrepancy is apparent at the early stage of simulation with forcings from GAN results with the 12-h 
lead time (Fig. 8e). Nonetheless, it has a minor influence on the surge prediction in the focused area near Tokyo 
Bay. Another limitation attributed to forcings from the GAN model for the 2009 Typhoon Melor is the lack of 
wind stress around the west coast of Japan correlated with the wind speed at the northwest sector of the typhoon’s 
inner core (see Fig. 4). Consequently, the storm surge model is unable to reproduce the strong ocean currents 
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in the range ~ 0.5–0.9 m/s simulated using forcings from the NWP model. The same result is seen for the 2011 
Typhoon Roke (Supplementary Fig. 13), but not for the 2012 Typhoons Guchol (Supplementary Fig. 14) and 
Jelawat (Supplementary Fig. 15), suggesting that the error is not systematic. It implies that many typhoon events 
in the training set have asymmetric wind profiles dominated by strong winds in the southeast vortex analogous 
to the 2012 Typhoons Guchol and Jelawat.

Figure 4.  Snapshots of simulated wind fields of the 2009 Typhoon Melor using the parametric model (a), 
the NWP model (b), and GAN models at t (c), t + 6 h (d), and t + 12 h (e). The figure was created using the 
Matplotlib Basemap Toolkit (https:// matpl otlib. org/ basem ap/) in Python.

https://matplotlib.org/basemap/
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To more clearly visualize the performance of the storm surge simulation using forcings from the GAN model 
relative to the NWP model, we plot the maps of mean residual in Fig. 9. The mean residual is defined by sub-
tracting the GAN-based storm surge simulations from the NWP-based results averaged over the test set. The 
maps show the overestimation tendency of the surge height to the north of the modeling domain, where the 
extratropical transition commonly occurs (Fig. 9a). The overestimation is also apparent in the west coast of Japan 
collocated with the distinctly underestimated ocean current velocity (Fig. 9b) caused by the limitation of the 
GAN model in simulating the northwest quadrant of typhoons as explained above. These areas mark where the 
GAN-based storm surge simulation is less accurate. Conversely, the storm surge simulation with forcings from 
the GAN and NWP models exhibit comparable performance on the east coast, particularly around Tokyo Bay.

Comparisons of time series of surge levels at tidal stations further demonstrate the performance of our 
proposed GAN models (Fig. 10). At all stations, the predicted surge heights using forcing from GAN models 
with various lead times are in good agreement with those of the NWP model. This result indicates that the pro-
posed GAN model can be a potential surrogate for the NWP model, which outperforms the parametric model. 
However, the simulated storm surges with all different forcings considerably underestimate the observed surge 
peaks of ~ 0.5 m at Irosaki and ~ 0.6 m at Mera. As the underestimation at Irosaki and Mera is repeated for other 
events (Supplementary Figs. 16–18), the possible cause is likely ascribed to the insufficient grid resolution or 
bathymetry data used in the hydrodynamics simulation. Local coastal effects have been reported to contribute 
to the total water level during  typhoons6,20. Specifically, the wave setup at Mera is critical as it faces the open 
ocean, influencing the total water level. Thus, the underestimation seems to be natural since the storm surge 
model did not consider the wave effect.

Computing time and storm surge model error. While the storm surge computational cost is the same 
for all the models, the main contribution of the proposed method is demonstrated in the computing time of 
the atmospheric forcings (Table 1). Since no information is available on the computational cost for the DSJRA 
dataset, we refer to another study with a nearly similar NWP model domain and horizontal grid  size48. Although 
their NWP model may have different configurations to the DSJRA and computational resources to our study, the 
comparison provides an overview of the typical computational cost required by NWP models. We train the GAN 
models using an NVIDIA A100 (80 GB) graphical processing unit, by which the computing time for a typhoon 
event takes approximately 9 s. The fully trained GAN model is also run on a standard desktop computer with 
a single central processing unit to provide a fair comparison with the parametric model, as shown in Table 1. 
Table 1 also indicates the storm surge model error based on the RMSE relative to the observation at all consid-
ered tide gauges for the 2009 Typhoon Melor shown in Fig. 10.

Uncertainty. The main source of uncertainty in the storm surge modeling is strongly linked to the typhoon 
 track17,49. To assess the uncertainty of our simulation results, we use the 2009 Typhoon Melor forecasts as an 
example. Figure 11a compares the best track and the tracks extracted from GAN models with the specified lead 

Figure 5.  Comparisons between observed and simulated wind speed of the 2009 Typhoon Melor by the 
parametric model, the NWP model, and GAN models at t, t + 6 h, and t + 12 h.
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times. The medians of distances of the respective track relative to the best track are 44.2 km and 75.3 km for 
predictions at t + 6 h and t + 12 h, respectively (inset of Fig. 11a). Our result is comparable to a previous study 
emphasizing the typhoon track prediction from satellite images with an average error of 95.6 km for a 6-h lead 
 time50. Furthermore, the track uncertainty is also appraised in the context of the probability-circle radii for 
typhoon track forecasts determined by the  JMA51. The probability-circle radii were categorized into groups of 
different wind speeds for various forecasts or lead times. For convenience, here we only use the expected values 

Figure 6.  Snapshots of simulated sea level pressure fields of the 2009 Typhoon Melor using the parametric 
model (a), the NWP model (b), and GAN models at t (c), t + 6 h (d), and t + 12 h (e). The figure was created 
using the Matplotlib Basemap Toolkit (https:// matpl otlib. org/ basem ap/) in Python.

https://matplotlib.org/basemap/
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for a wind speed of > 30 kt based on the evaluation done in  201651. For 6-h and 12-h lead times, the expected 
probability-circle radii are 50 nm (= 92.6 km) and 85 nm (= 157.4 km), respectively. Figure 11a shows that the 
predicted tracks lie within the composite of the above radii. We acknowledge that the JMA is implementing a 
new categorization and verification, resulting in smaller probability-circle  radii52. However, it does not alter the 
main conclusion of our study. Besides, we opt to use larger radii to more clearly visualize the effect of track devia-
tions in our storm surge models.

The standard ensemble storm surge prediction is obtained by simulating the hydrodynamics using multiple 
predicted typhoon tracks as realized in the JMA forecasting  system49. Here, we test a slightly different approach 
because the lead times have been defined beforehand under the GAN architecture. To create an ensemble storm 
surge prediction, we shift the input of the GAN models in four directions: west, east, south, and north following 
a previous  study17. For conciseness, we only experiment using the 6-h lead time; thus, the amount of shifting cor-
responds to the 92.6 km of the JMA probability-circle radii. Figure 11b–d shows the predicted sea level pressure, 
wind speed, and the corresponding surge height at Tokyo station from all ensemble members. The time series 
in the forcings of the shifted cases varies with the difference in the wind speeds up to approximately 10 m/s. The 
simulated surge heights reflect the variability of the forcings and capture the observed maximum surge heights 
within the ensemble range. This experiment demonstrates the efficiency of GAN as the computational cost of 
this kind of prediction is similar to that of using the parametric model.

Conclusions and future works
We have demonstrated the application of deep learning through our newly-proposed approach based on GAN 
to emulate the atmospheric forcing fields for simulating storm surges efficiently. The speed-accuracy tradeoff, 
which is considered the primary objective of this study, typically encountered in storm surge modeling, has 
been addressed. Furthermore, some of the physical properties associated with typhoons while undergoing an 
extratropical transition or landfall are reasonably attained, which was previously difficult to accomplish using 
conventional parametric models. The proposed method in this study can improve the standard numerical storm 
surge modeling with forcings from the parametric model and is also equipped with a useful forecasting feature 
with up to 12-h lead time. This feature, together with the cost-effectiveness of the algorithm, will be favorable 
for an operational storm surge forecasting system, especially when access to high-performance computing is 
unavailable or is limited. However, in the future, several potential improvements can be made to this method 
from both scientific and practical perspectives, as discussed below.

A control for the GAN model could be introduced likely through an attention  mechanism53 to focus on the 
more informative components, which in our case is an area surrounding the typhoon center. It will contribute 
to the storm surge accuracy sensitive to the typhoon core region. Another way to attain such an improvement 
is to train the GAN model using a hybrid NWP and parametric  model54. However, precautions should be taken 
concerning the neglected topographic effect in the parametric model part. Further improvements in the hydro-
dynamics section, apart from using higher resolution grid and bathymetric data, can be achieved by simulating 

Figure 7.  Comparisons between observed and simulated sea level pressure of the 2009 Typhoon Melor by the 
parametric model, the NWP model, and GAN models at t, t + 6 h, and t + 12 h.
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Figure 8.  Snapshots of simulated storm surge and depth-averaged ocean currents during the 2009 Typhoon 
Melor using forcings from the parametric model (a), the NWP model (b), and GAN models at t (c), t + 6 h (d), 
and t + 12 h (e). The figure was created using the Matplotlib Basemap Toolkit (https:// matpl otlib. org/ basem ap/) 
in Python.

https://matplotlib.org/basemap/
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the nonlinear interactions between tide, wave, and surge using coupled  models55. The comprehensive modeling 
framework provides a more accurate physical representation of hydrodynamic responses to the atmospheric 
disturbance by a typhoon, albeit it requires extra computational efforts.

On the contrary, from the practical point of view, a more efficient storm surge numerical  model15 is one 
alternative to realizing a rapid forecasting system. Additionally, configuring the GAN model to directly translate 
atmospheric forcings into sea surface elevation fields can substantially speed up the real-time computations 
of storm surges. Since the 12-h lead time forecasts in this study show reasonable accuracy, the model can be 
extended further to account for longer lead times which will be crucial in operational storm surge forecasting. 
One may use a coarser time interval for the GAN model with longer lead times to preserve computer memory 
usage, particularly during training. Lastly, owing to the flexibility of the proposed method in fusing various 
datasets, auxiliary inputs from other related variables or satellite images may also be advantageous for prospec-
tive studies.

Figure 9.  Maps of mean residual of surge height (a) and ocean current velocity (b). The residual (NWP–GAN) 
is averaged over the test set. The map was created using the Matplotlib Basemap Toolkit (https:// matpl otlib. org/ 
basem ap/) in Python.

https://matplotlib.org/basemap/
https://matplotlib.org/basemap/
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Figure 10.  Comparisons between observed and simulated surge heights during the 2009 Typhoon Melor 
using forcings from the parametric model, the NWP model, and GAN models at t, t + 6 h, and t + 12 h. The 
observation at Odawara is unavailable for this event.

Table 1.  The computing time for generating atmospheric forcings and the corresponding storm surge model 
error. We use a standard desktop computer with a single processor for the parametric and GAN models 
for a 73-h simulation time of the 2009 typhoon Melor. *The computation was performed on the FUJITSU 
supercomputer FX100 with 256 processors for a 45-h integration time of a different  event48.

Model Computing time (s) RMSE (m)

Parametric 8 0.16

 NWP 4200* 0.10

 GAN

t

13

0.10

t + 6 h 0.12

t + 12 h 0.13
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Data availability
The typhoon best track data of IBTrACS is available at https:// www. ncei. noaa. gov/ produ cts/ inter natio nal- best- 
track- archi ve, and the reanalysis products of the DSJRA-55 are downloaded from https:// search. diasjp. net/ en/ 
datas et/ DSJRA 55. The observed wind and sea level pressure of the JODC are obtained from https:// www. jodc. 
go. jp/ jodcw eb/ JDOSS/ index. html, while the observed storm surge by the JMA can be found at https:// www. data. 
jma. go. jp/ gmd/ kaiyou/ db/ tide/ genbo/ index. php. The bathymetry data are acquired from https:// www. gebco. net/ 
and https:// www. jha. or. jp/ en/ jha/.

Code availability
The GAN (pix2pix) model is based on the Keras library in Python adopted from https:// machi nelea rning maste 
ry. com/ how- to- devel op-a- pix2p ix- gan- for- image- to- image- trans lation/. The ROMS source code is available 
at https:// www. myroms. org/. The parametric model is modified from https:// github. com/ ec- jrc/ pySto rms. All 
figures are produced using the Matplotlib library implemented in Python (https:// matpl otlib. org/).
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